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On the Diffusion of Tides into Permeable Rock of Finite Depth

R., C. DiPrima

Harvard University

1. Introduction

It has been observed in the irrigation wells of the Hawaiian Islands

that the water-level fluctuations have frequency components corresponding to those

of the ocean tides [1. This phenomenon was analyzed by Carrier and Munk, [2 j

assuming the observed ground-water fluctuations to represent a diffusive trans-

mission of the tidal disturbances through the porous volcanic structure of the

island. The purpose of the investigation was to use the results in estimating

the permeability of the porous medium.

In [2] it was assumed that the porous medium was infinitely deep. In

actual fact, however, there will be an essentially impenetrable bounding surface

(see Fig, 1), This paper is concerned with the analysis of the same problem

treated in (2] , but taking account of the bounding bottom surface. Numerical

computations are carried out for several values of the dimensionless depth. Also

the limiting case of shallow water theory is studied. Using the results of the

infinite depth, shallow depth, and finite depth theory it is possible from the

graphs given in Figs. 2 and 3 to estimate the amplitude and phase lag in the

fluctuations of the ground-water as a function of the distance inland for various

values of the dimensionless depth. It is found that for the values of the

physical parameters which are probably of most concern the infinite depth theory

gives satisfactory results in the region of interest,

2. Formulation of the Problem

Although the formulation and the first part of the analysis of this

problem follows quite closely that related in 121 it is convenient, for the sake

of completeness, to repeat part of that work here, As the water in the ocean
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bounded by Oy' and OB (see Fig. 1) rises and falls about its mean level OA,

the pressure on the line OB varies. Corresponding to this periodic change in

pressure on OB we can expect periodic fluctuations in the free surface of the

ground-watery i.e. Ox'.

The equations governing the motion of the fluid in the porous medium

are the conservation of mass

div (&) ° (2.1)
at

and Darcy~s law kich replaces the conservation of momentum law (see (3] ),

= (k/p) grad (p p). (2.2)

Here p and p are the density and the viscosity of the fluid; a and k are

the porosity and the permeability of the material; q is the velocity with

components u and v in the xg and y" direction; p is the gauge pressure-

P -= pcgy' is the pressure when the fluid motion is zero; p is the mean

density; and subscript notation indicates partial differentiation. The simple

compressibility law used by Carrier and Munk is

p8= Poao(l + (p po)) (2.3)

where 6 is essentially (p c2)_I with c the speed of sound in the fluid. It~0

should be pointed out that Eq. (2.2) says that the pressure gradient is

proportional to a velocity rather than an acceleration as in the Xavier-Stokes

equation. As a result we will obtain finally an equation of the diffusion type

rather than a wave equation- hence the free surface amplitude will decay in xf.

The boundary conditions expressed in terms of the pressure p are

p = 0, on the free surface (2.4a)
%ie t

p = -pOgy OB + q1e on OB (2.4b)

a(p - po)/ay2 - 0 on y' H9 (2.4c)

where H is the depth of the porous medium. The last boundary condition results
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from the requirement that the normal component pf velocity be zero on the

impenetrable bottom. The pressure q is of opurse directly proportional to the

tidal-wave amplitude.

If we let q - p - P0 and combine Eqr. (2.1), (2.2) and (2.3) we

obtain

6q -- 0  (2.5)

where A is the Laplacian operator. If we denote by q(x',t) the y'

coordinate of the free surface, Eq. (2.4a)-implies q(x',-%t) pog-, but on the

free surface 7t v/ hence using Eq. (2.2) our boundary condition (2.4a) may

be expressed as

% + qy, 0 on y, -, x 0. (2.6a)

Actually as in the usual linear theory of water waves this boundary condition is

to be applied on y = 0. The boundary conditions (2.4b) and (2.4c) may be

written as

q (on OB) = qje i t  (2.6b)

, 02 y' = - H. (2.6c)

We shall only solve this problem-in the case that the line OB occupies the

half-line y 0 0, x < 0. That is we take 0 (see Fig. 1). Actually this

is fairly realistic since is probably of the order of 50 or so.

Finally if we introduce the following dimensionless variables

Coto x = x , y =yt/L, h = H/L ,
2 2 (2.7)

L =(p gk)/( L o), c=(p g k6)/(jO ,CO), q q= q1 9(xy)e i(Ot(27

we obtain

won is 0, (2.8)

with the boundary conditions
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+i =0 y =0,x 0, (2.9a)
y f - 1 ,y = 0 ,x < 0 ,(2.9b)

ep = 0 y - h -h o < x < (2.9c)
y

The free surface q(x.t) is (p g) lq(x.,o,t) but from Eqs. (2.7)

q - qlp (x~y) exp (iwt) so
q(xt) q o (xo)ei wt  x * 0. (2.10)

Pcg

So the problem of determining the free surface is exactly that of determining

9o (xo). The combination of parameters ql/ 0g is the maximum height of the

tidal-wave measured from yO = 0.

Before proceeding to a solution of the problem defined by Eqs. (2.8)

and (2.9) it is perhaps worth-while to mention briefly the size of the
parameters which appear in this problem. We have t/P = 0(lO2 cm2/see),

k = O(5Xl0 6 cm2)9 ' = 0(.20), g = 980 cm/sec2, and 'c for a twenty four hour

tide is 2n/24 hours, hence L = 0(1000 ft). Since c is 0(5000 ft/sec)

for water, & is a very small number, 0(10 h). Finally, a reasonable value for

the depth of the ocean is about three miles so h may be as large as 15.

. Shallow Water Theory

Before considering the general problem given by Eqs. (2.8) and (2.9)

let us look at the limiting case in which the depth H is small enough that we

can neglect variations in the yO direction, and also set v a 0. Then

u(x ,t) represents an averaged velocity across the section -Hyt'<O. If we

assume incompressibility, i.e. 5 = 0, the conservation of mass equation

appropriate to this situation is

Hpoux , = - Po8 oilt . (3.1)

DarcyTs equation reduces to
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u (k/x)q . (3.2)

Since there is no variation in the y direction our condition that q - pogn

on the free surface must hold throughout th -strip -H<y', -;k 0. Using this

and Eqs. (3,1) and (3.2) we obtain

qx x0 o qt - 0, ' 0. (3.3)kpog'H

The condition that q - ql exp (iot) for x $0 is now applied at x -02

consequently we set q = qlP (xv) exp (it). Then Eq. (3.3) becomes

i( ") l -;0= xI , 0. (3.4)

An appropriate solution of Eq. (3,4) satisfying a finiteness condition at

infinity is

o(i/HL)l/2x '

~(xUt) - e

HenceC-x Xt ( )1
Hn (x',t) = (ql/pog) e ,2HL.1/2 e(, (3.5a)

x -e )1/2 [w x-12

= (q/pog) e e ()/2 . (3.5b)

Actually, in order for this theory to be valid not only must the wave

length of the disturbance be large compared to H as in the usual shallow water

theory but also H must be small compared to the other natural length scale, L.,

which appears in the problem, i.e. h must be small. This can be seen by an

examination of the behaviour of the solution of the general problem. This is

done in Sec. 5 where it is found that for h < 1/4 we can ex*Pet te shallow

water theory to be quite accurate. The amplitude and phase lag of pog(x,t)/ql

are plotted in Figs. 2 and 3 as a function of x for h = 1/4.

4. Solution of the Problem

To solve the problem defined by Eqs. (2.8) and (2.9) we shall use the

method of Fourier transforms and the Wiener-Hopf technique. Let
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e- J: 9(x,y)dx. (41)

Then the transform of Eq. (2.8) is

. 2 if') = o. (4,2)

A solution of this equation satisfying the boundary condition (2.9c) is

(cy) = A( ) cosh y + h)CJ (4.3)
2*iC)1/2

where C = ( + 2 and A( ) is to be determined by satisfying the

boundary conditions.

Let
lim eax

gj(x) (4.4a)10 x O

g (x) 0 x b 0
92 (, (4.4b)
2 (x,o) x ? 0

and

f(x) (p (XO) + iep(x,o). (4.5)
y..

It is clear that 4p(xo) a gl(x) + g2 (x); hence

, Q(o) =A( ) cosh-Ch -l( ) + '2( "

(4.6)i = ~(a - + 46
2

Also using Eq. (4.3)

f( ) = (C sinh Ch + i cosh Ch) A (4). (4.7)

Combining Eqs. (4.6) a Ld (4.7) we obtain

where

G( C snh Ch + i cosh Ch • (49)
cosh Ch

If we recall from Sec. 2 that we wish to determine a(x,o) it is
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clear from Eq. (4.4) that our problem is now that of determining g2(x) and

hence j2( F ). To determine i2( 0 using Eq. (4.8) we shall usqe the Wiener-Hopf

technique. This technique has been used to treat similar problems (see for

instance 2, 43 53); consequently the analysis will only be briefly outlined

here. First (t) is analytic in the upper half plane, (UHP), Im(t ) - a;

g2(R) is analytic in the LHP and f( ) is analytic in the UHP. The function

G( ) is analytic and non-vanishing in a strip containing the real axis. This

will be seen clearly at the end of this section where G( %) is represented as

the quotient of two infinite products. It might be noted that though

C ( 2 + i )1/2 is a multivalued function, G(t ) as defined by Eq. (4.9)

consists only of even terms and hence does not have any branch points. Assuming

for the moment that we can write G(P,) as G_( -)/G ( ) where G_( ) is

analytic and npn-vanishing in the LHP, and G+ (k ) is analytic and non-vanishing

in the UHP we can rewrite Eq. (4.8) as

f(4-) G +( t) - G -(-ia) ,(F) G oz -GC-ia)) 1 )

The left hand side of this equation is analytic in the UHP, the right hand side

is analytic in the LHP and they agree in a common strip of analyticity. Hence

Eq. (4.10) defines an entire Lmction E( !). We shall show shortly that

G ) = O(pl/2) as I- ,Im(E) <0 and G+() (F -1/2) as

I " J - • Im(l ) 0 0. Using this and investigating order conditions at infinity

we can show that E(19) 0 0, consequently

It is now necessary to determine -G2 E) and G( )o The splitting

of G( 4) is done in a manner exactly analogous to that used by Heins in [4)

and 5 • Using the infinite product representation of cosh z' (see C6)) we
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have

M(4) = cosh Ph V fjl + i 2h2/(2n + 1)2n2) m= ) m(-), (4.12)

where I i 2 i2h

n-o (2n+l)2nZJ (2n+l) e4

We have inserted the exponentials to insure absolute convergence of the infinite

products defining m(F.) and m(- t) in the UHP and LHP respectively. If we

write M( l) as M(- )/IM( 4) it is.clear that M.( ) = m( F) has no zeros

or poles in the LHP. Similarly 1/M+(. ) = m(- P) has no zeros or poles in the

! UHP.

The function L(P) - G sinh Ch + i cosh Oh has zeros at

Ch = , i n-O,l,22 .... , where the . are complex numbers lying in the firstM n

quadrant. For n large they may be determined by the asymptotic relation

Pn =n + ih/nn + 0( Cnr2 ). We may write L(E) as

ri 02h2T.T [1 + 7" 2 h il(t ) 1(- F0., (4.14)
n=o Rn

where 1/2 1/2 ih

20 1 2i e (415

Again we have inserted the exponentials in order to insure absolute convergence

in the appropriate half planes. If we write L(P.) as L_(P-.)/L(F.) and take

L_() = l(t) 1/L+(r) = il(-E) it is clear that L.(P) is free of zeros

and poles in the LHP and L ( ) is free of zeros and poles in the UHP.
+1'

Consequently we have

X(4)
G( )= e .(() = e l(9) (4.16a)M_( ) +  m( P.....

e ()L+(E) e M I)
o(,) e = m_ '--__ °_ (4.16b)
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We shall choose the factor exp (X" )} introduced in Eqs. (4.16a) and (h.16b)

in such a manner that G (t ) and G+ (4 ) have algebraic behaviour as

-- in the LHP and UHF respectively.

To investigate the behaviour of G.(.) for Im(P, ) < 0, IP--0

we first note that the terms involving a may be neglected against unity for

If -o Since n nn as n -+ we have that G_(P) is of the order
X(0) (I-wne w/ n  W (i a (1+w/n) e'w/n 2

e it h/P o ) 71 (1 + w/= e (1 ith/Po 01

c n =1) -w/ C2n - 0 ... .......
(I 2wI (n~) e (1 + 2wln) e

n=o n=1

t where w = i h/n. Now using the relation that

!W o -w/n
l/r (w) =w e T (1 + w/n)e

n=l

and Stirling's asymptotic formula for the gamma function, (see [6J) we obtain

*G-( Z )-Ow 1 12ex ( t) +w in 4])

for mnt) <oII- So choosing w in 4 - (ifh In ) we

have that G( ) - 0(2, 1/2) as))- , Im( ) <0. A similar argument will show

that G ( ;) = O(w 1/2) for A --j, Im( ) P 0. With these order relations it is

not difficult to show that E( ) is zero as mentioned earlier; and bence we

obtain Eq. (.1ll) for 2(.,) where G (F) is defined by Eq. (4.16a). In

particular it can be seen from Eq. (h.16a) and the definitions of l( P) and

em() that G (0) = l

Using the usual inversion formula we have that

90

g2 L(x) = -e1~ dG(=a -l (4-17a)

1 i 4x G-(-ia) cosh Ch -G+(9)G(f) d (4.17)

2n G_ ( . ... ... . (hTl
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In the limit as a 0 it is clear from Eq. (4,17a), that R (2 ) is not

singular at the origin, hence we may actually take the real axis as our path of

integration in evaluating g2 (x). Of course we shall actually close our path of

integration in the UHP when x #t 0 and in the LHP when x < 0. For the case

x : 0 it is convenient to use Eq. (4.17b) for evaluating g2(x). Since

G( is non-vanishing in the UHP, g2 (x) will be simply the sum of the

residues at the poles of the integrand which occur at Ch - ip , n = 0, l, ....
n

Carrying out this straight forward computation we obtain in the limit a = 0

=(P 2  e , (.18)
g2x) H n n + ih h4)G (ian)

n-o \anl p

w 22 1/2
where an = Wh + it) In the particular case that the fluid is in-

compressible, i.e. a - O, Pan - h and Eq. (4118) becomes

gW) he a / (4.19)
2 ~ (h~c + ih-hz)G4 X±%) n

5. Numerical Computations and Discussion

In this section we shall only be concerned with the case when the fluid

may be considered as incompressible, then g2 (x) is given by Eq. (4.19). In C21

a few values of g2 (x) were computed for a .01 and compared to the = 0

caseg the amplitude and phase lag in the ground-water fluctuation for a = .01

were slightly lower than for 0 0. Since c is however O(10 ) we should

expect very little error in actually setting r. = 0.

First let us determine when the shallow water theory solution given by

Eqs. (3.5) may be expected to be valid. In order for g2 (x) as given by

Eq. (4o19) to agree with the shallow water solution it is necessary that
h~1/2

c 0 (i/h) as h- 0, and also that all the coefficients of the higher

_ __O_ _



order terms1 must approach zero. It can be shown with little difficulty from an

investigation of the transcendental equation C sinh Ch + i cosh Ch that for

small h, P30 - (ih)1 / 2 and hence a 0 (i/h) / . Also upon noting that for small

h. P n-nr for n 1, it can be seen from Eq, (4,19) with the aid of the

representation of G (ia ) given in Eq. (5o1) that all the coefficients of the
+ n

higher order terms do approach zero as h,-P 0. Hence g2(x) as given by

Eq. (4.19) does approach the shallow water solution as h -, 0. To determine

quantitatively when Eq. (3.5b) is valid we have computed o and ao  as a
0

function of h. Also the ratios of the wave length predicted by the shallow

water theory, X = 21/(2HL)l/2, to H and that of the fundamental mode,

ko = 2n/Im(ao), to H have been computed. These results are given in Table 1

and graphically in Fig. 4. It appears from Fig. 4 that we may expect the

shallow water theory to be accurate over the entire range of x for h 4 1/4.

In order to compute g2(x) for various values of h it is necessary

to cast G(in) into a form more suitable for numerical analysis than that

given by Eq. (4.16a). This can be done in a straight forward manner by using

the infinite product representation of the gammwa function. We obtain, when

0 0, that

G4( an =~nexp ((Pnln I4)/n) frPn&' +~( . ~ - 51

+ n22ti(l . P WOO.) '(2pn/i) lm=l (1 +

In any actual numerical computation the infinite products in Eq. (5.1) is, of

course, to be replaced by a finite numbers of terms (recall that P -+ mit as
mm -4 c ) The number of terms that is required to give an accurate answer is of

course dependent upon h and Pno

We shall refer-to the term exp(-1ox) in Eq. (4.19)y wich is the dominating

term as x oo y as the fundamontal term,
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In this paper g2 (x) was computed for h = 2 and h 15. Values of

for h - 2 and h 15 are given in Table 2. Let us first consider the case

h = 2. Then the real parts of a and a, are given by .59 and 1.65 respectively0

hence we may expect the fundamental term to give an accurate result for x r 2.

Carrying out the necessary computations we obtain

Pog n(xt) = .61 e- °59x ei(p -t °885-'292x) + O(e-alx) h = 2 (5.2)
q,

In Figs. 3 and 4 the amplitude and phase lag in the ground-water fluctuatioA have

been plotted. The extrapolation of the results to x = 0 are indicated by dotted

lines. Actually it is not difficult to obtain another term in the series, but

unless particular quantitative information is desired for this value of h it

hardly seems necessary to do that. It might be mentioned that three terms were

more than sufficient in evaluating the infinite product in Eq. (5.1).

In the case that h'- 15, the fundamental term can only be expected to

be accurate for x : 7. We obtain

P g  (x,t) 7 elox e it.68.7x) + O(e-'Ix); h - 15. (5.3)
ql

In order to obtain results valid for x = 1 or 2 when h = 15 would probably

require the computation of three or four terms of the series. However in view

of the results for h 2 and these results for x 2, 7 it is clear that the

amplitude curve for h f 15 will lie almost exactly on the curve given by the

infinite depth theory2 (see Fig. 2).

It is interesting to note that the shallow water theory and finite

depth theory predict an exponential decay in x for the amplitude of the ground-

water fluctuation, this is in contrast to the algebraic decay, (like x-),

2 The amplitude and phase lpg curves for h = oc have been taken from the results
given in [2].
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pz-edicted by the infinite depth theory. Also the phase lag predicted by the

shallow water theory and. finite depth theory continues to increase with x, while

tlat predicted by the infinite depth theory approaches n/2 with increasing x.

(This is clearly illustrated in Fig. 3). That g2 (x) as given by Eq. (4.19)

approaches the infinite depth result given in £2] as h ->c , cannot be seen

easily from (4.19). However an examination of G( 4) as given by Eq. (4.9)

shpws that as Ch -->oo G(A) - i + (g2 i)l/2 which we might denote by

G, (a). This function is the one that occurs in 2]2. It is interesting to

nose that G (A ) has singularities of the branch point type, and in the limit

as i -+ 0 these singularities will occur at the origin. This explains the

algebraic behaviour of T(x,t) for h = oo . In contrast for any finite value of

h the strip of analyticity of G(A ) is finite even when - 0, and its

singularities are poles rather than branch points; hence the exponential sort of

beaviour for 1(x,t) for finite h.

A plausible physical explanation for the fact that the amplitude curves

for the ground-water fluctuation lie continuously below one another as h

depreases (see Fig. 2) is the following. Imagine that our porous medium and

fluid occupy the strip - H <y < 0, - < x <. Suppose that we apply a

uniform pressure on the half line y 0, oo < x < 0; then fluid in the left

half strip will be forced through the gap - h < y < 0 and the free surface

given originally by y = 0, x ; 0 will rise. The amount of fluid that can be

forced through this gap, and hence the effect that the pressure variation can

have on the free surface, is proportional to the gap distance, h. So with

decreasing h the amplitixde of the free surface fluctuation is lower and dies

out more quickly.
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h ao(=O) iH

- ih) 1 / 2

.25 .3676 i .3382 1,4704 i 163528 17.76 18.57

.50 65+76 + i .4548 160750 i .9096 12.57 13.81
1.00 .8004 + 1 .5702 . ,8004 + i .5702 8,88 :1.o9
2,00 1.1828 + i .5832 ,5914 + i .2916 6.28 10.773400 1.3739 + i .4775 4579 + i .1592 4.85 13,16

5,00 1,033 + 1 03090 .3007 + 1 .0618 3.97 20.03
10,00 1.5547 + i .1569 .1559 + i .0157 2.81 40.04
15°001 1.5638 + i 01046 .100 + i .0070 2.29 59.83

ZanL 1.

h is the dimensionless depth, X = 24(2HL)2/2 is the wave length for shallow

water theory, X = 2nL/Im(ao) is tho wave length of the fundamental mode for
0 0

finite bottom theory*

I



nI

;' 'i n Pn(h-=2) n(h = 15) .. . .

1.1828 +1 '5832 1,5638 + .1046
1 3.3106 + 1 .6499 4-6886 + 1 :3234
2 6*3ol4 + 1 .3277 7.8016 + .5749
3 9.4248 + i .2138 10.8705 + i .9070
4 13.7139 i 1.3629
5 16.1332 ' i 1.4236
6 18.9644 + i 1.0572

TABLE 2.
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